

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 Impact Factor (RJIF): 6.35 www.phytojournal.com

JPP 2025; 14(5): 206-208 Received: 16-06-2025 Accepted: 19-07-2025

Eugene BS Conteh

Lecturer, Department of Pharmaceutical Chemistry, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone

Abdulai Turay

Lecturer, Department of Pharmaceutical Chemistry, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone

Senesie Kamara

Lecturer, Department of Clinical Pharmacy and Therapeutics, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone

Ishmael Abdulrahman Kamara

Lecturer, Department of Pharmaceutical Chemistry, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone

Denis Conteh

Lecturer, Department of Pharmacognosy and Phytochemistry, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone.

Mohamed Bockarie

Final year Pharmacy Student, Faculty of Pharmaceutical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone.

Corresponding Author: Abdulai Turay

Lecturer, Department of Pharmaceutical Chemistry, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone

Phytochemical profiling, and antibacterial evaluation of ethanol and ethyl acetate extracts of *Nauclea latifolia* leaves, stems, and roots

Eugene BS Conteh, Abdulai Turay, Senesie Kamara, Ishmael Abdulrahman Kamara, Denis Conteh and Mohamed Bockarie

DOI: https://www.doi.org/10.22271/phyto.2025.v14.i5c.15575

Abstract

Background: Traditional medicines remain central to primary health care in West Africa. *Nauclea latifolia* is widely used ethnomedicinally and contains diverse secondary metabolites with reported bioactivities (Ayeleso *et al.*, 2014; Enabulele *et al.*, 2017; Haudecoeur *et al.*, 2017) [3,7,9].

Objective: To quantify powdered and crude extract yields; qualitatively profile phytochemicals; establish TLC fingerprints; and evaluate in-vitro antibacterial activity of ethanol and ethyl acetate extracts from leaves, stems, and roots of the plant.

Methods: Plant parts were dried, powdered, and Soxhlet-extracted with 95% ethanol or ethyl acetate. Qualitative phytochemical screening followed standard pharmacognosy methods (Sofowora, 1993; Harborne, 1998; Evans, 2009) ^[14, 10, 8]. TLC used chloroform:methanol (9:1) and hexane:chloroform (9:1) with Rf determination. Antibacterial activity against *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Escherichia coli* employed agar well diffusion on Mueller-Hinton agar; ciprofloxacin (5 μg) and DMSO were positive/negative controls.

Results: Powdered yields: leaves 750 g, stems 520 g, roots 780 g. Total crude extract: 35.08 g (overall 2.33%). Ethanol extracts were richer in alkaloids, flavonoids, saponins, tannins, glycosides, triterpenes, resins, and phenolics. TLC showed 2-4 spots per extract (Rf 0.14-0.75). Antibacterial zones (mm) ranged 4.5-13.0 for extracts vs 14.5-18.0 for ciprofloxacin; DMSO 0.0.

Conclusion: Findings demonstrate solvent- and part-dependent phytochemical diversity and antibacterial activity, with ethanol extracts generally outperforming ethyl acetate. Results support ethnomedicinal applications and justify MIC/MBC determination and bioassay-guided isolation (Akinyemi *et al.*, 2005; Akinmoladun *et al.*, 2007; Edeoga *et al.*, 2005; Osuala *et al.*, 2020) [2, 1, 5, 12].

Keywords: *Nauclea latifolia*, TLC fingerprint, phytochemical screening, ethanol extract, ethyl acetate extract, agar well diffusion, antibacterial activity, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Escherichia coli*

Introduction

Medicinal plants contribute key leads for anti-infective discovery. *Nauclea latifolia* (Rubiaceae) is used for fever, diarrhea, malaria and gastrointestinal disorders with leaves, roots and stems commonly employed (Ayeleso *et al.*, 2014; Enabulele *et al.*, 2017; Oko, 2013) [3, 7, 11]. Documented constituents include alkaloids, saponins, tannins, glycosides, triterpenes and phenolics (Tukur *et al.*, 2011; Edem, 2021) [3, 15, 6]. Given local utilization in Sierra Leone and variability across regions, this study evaluated part- and solvent-dependent yields, phytochemicals, TLC fingerprinting, and antibacterial activity against clinically relevant bacteria.

Materials and Methods Study Design and Setting

Experimental laboratory study performed at the COMAHS-USL Pharmaceutical Sciences Laboratory and the PBSL Microbiology Laboratory (Freetown, Sierra Leone).

Plant Material and Authentication

Mature leaves, stems, and roots of *Nauclea latifolia* were collected under WHO guidance; authentication/voucher references recorded (FWTA ed. 2,1:235; UPWTA ed. 1,69).

Preparation of Powder and Soxhlet Extraction

Plant parts were air-dried, pounded, sieved (mesh $80\rightarrow70$) and weighed. For each solvent and part, 250 g powder was Soxhlet-extracted (~6 h) with 95% ethanol or ethyl acetate, then concentrated under reduced pressure to obtain crude extracts.

Phytochemical Screening

Qualitative assays followed standard protocols (Sofowora, 1993; Harborne, 1998; Evans, 2009) [14, 10, 8]: carbohydrates (Molisch/Fehling/Benedict), glycosides, alkaloids (Mayer/Dragendorff/Wagner), saponins, tannins (FeCl3), flavonoids, steroids/triterpenes, resins, phlobatanins,

phenolics.

Thin Layer Chromatography (TLC)

Silica plates were developed in chloroform: methanol (9:1) and hexane: chloroform (9:1); visualization at 256/366 nm; Rf = distance compound / distance solvent front.

Antibacterial Assay

Agar well diffusion on Mueller-Hinton agar against *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Escherichia coli*. Inocula standardized to 0.5 McFarland; wells 7 mm; incubation 24 h at 37 °C. Ciprofloxacin (5 μg) served as positive control; DMSO negative.

Results

Table 1: Powdered Plant Parts of Nauclea latifolia

Plant Part	Weight of Bottle (g)	Weight of Bottle + Sample (g)	Powdered Weight (g)
Leaves	250	1000	750
Stems	240	760	520
Roots	260	1040	780

Table 2: Crude Extract Yield by Plant Part and Solvent

Extract Type	Crude Extract Weight (g)	Percentage Yield (%)
Leaf (Ethanol)	7.20	0.48
Leaf (Ethyl Acetate)	6.85	0.46
Stem (Ethanol)	5.60	0.37
Stem (Ethyl Acetate)	4.25	0.28
Root (Ethanol)	6.80	0.45
Root (Ethyl Acetate)	4.38	0.29
Total	35.08	2.33

Table 3: Phytochemical Screening of Nauclea latifolia

Phytochemicals	Leaf (Ethanol)	Leaf (Ethyl Acetate)	Stem (Ethanol)	Stem (Ethyl Acetate)	Root (Ethanol)	Root (Ethyl Acetate)
Carbohydrate (Molisch, Fehling, Benedict)	++	+++	+++	+	+++	+++
Glycosides	+++	+++	++	++	++	+++
Alkaloids	+++	++	+++	_	+++	+
Flavonoids	+++	_	+	_	++	-
Saponins	+++	+++	+++	+	+++	+
Tannins	+++	+++	+	+	+++	+
Triterpenes	+++	+++	+	-	+++	++
Resins	++	++	+	-	+++	+
Phlobatanins	+	+	+	+	+	+

Table 4: TLC Results for Nauclea latifolia

Plant Part	Solvent System	Extract Type	Rf Values (Spots Detected)	Number of Spots
Leaf	Chloroform:Methanol (9:1)	Ethanol	0.18, 0.31, 0.47, 0.68	4
Leaf	Hexane:Chloroform (9:1)	Ethyl Acetate	0.22, 0.37, 0.59	3
Stem	Chloroform:Methanol (9:1)	Ethanol	0.14, 0.29, 0.52	3
Stem	Hexane:Chloroform (9:1)	Ethyl Acetate	0.20, 0.35	2
Root	Chloroform:Methanol (9:1)	Ethanol	0.16, 0.40, 0.60, 0.75	4
Root	Hexane:Chloroform (9:1)	Ethyl Acetate	0.19, 0.44, 0.71	3

Table 5: Zone of Inhibition of Nauclea latifolia

Isolate	Positive Control Ciprofloxacin (5 µg)	Negative Control DMSO	Leaf (Ethanol)	Leaf (Ethyl Acetate)	Stem (Ethanol)	Stem (Ethyl Acetate)	Root (Ethanol)	Root (Ethyl Acetate)
Staphylococcus aureus	17.5	0.0	13.0	10.0	8.5	6.0	9.5	7.5
Klebsiella pneumoniae	18.0	0.0	10.5	8.0	7.0	5.0	8.0	6.0
Escherichia coli	14.5	0.0	9.0	6.5	5.5	4.5	6.0	5.0

Discussion

Ethanol extracts displayed higher crude yields and broader phytochemical presence, paralleling stronger antibacterial zones particularly against *Staphylococcus aureus* than ethyl acetate extracts. This aligns with reports that protic solvents extract phenolic/flavonoid constituents implicated in

antimicrobial effects (Edeoga *et al.*, 2005; Akinmoladun *et al.*, 2007; Ríos and Recio, 2005) ^[5, 1, 13]. TLC profiles (2-4 spots; Rf 0.14-0.75) indicate chemical diversity across parts/solvents, consistent with prior medicinal-plant analyses (Chukwujekwu *et al.*, 2006) ^[4]. Methodological strengths include standard pharmacognosy screens and compendial diffusion assays; limitations include qualitative phytochemistry, absence of MIC/MBC, and no compound isolation.

Future work should quantify key classes (e.g., total phenolics/flavonoids), establish MIC/MBC, perform bioassay-guided fractionation, and assess toxicity and stability to prepare for translational development.

Conclusion

Across leaves, stems, and roots of *Nauclea latifolia*, ethanol extracts generally outperformed ethyl acetate in yield, phytochemical richness, and antibacterial activity against *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Escherichia coli*. These data substantiate ethnomedicinal use and provide a reproducible baseline (yields, TLC, zones) for replication and scale-up studies.

References

- 1. Akinmoladun FO, Akinrinlola BL, Farombi EO. Phytochemical constituents and antioxidant properties of extracts from the leaves of *Nauclea latifolia*. Afr J Biotechnol. 2007;6(10):1196-1200.
- 2. Akinyemi KO, Oladapo O, Okwara CE, Ibe CC, Fasure KA. Screening of crude extracts of six medicinal plants for anti-MRSA activity. BMC Complement Altern Med. 2005;5:6.
- 3. Ayeleso AO, Oguntibeju OO, Brooks NL. *In vitro* antioxidant potentials of leaves and fruits of *Nauclea latifolia*. Sci World J. 2014;2014:437081.
- Chukwujekwu JC, Coombes PH, Mulholland DA, Van Staden J. Emodin, an antibacterial anthraquinone from Cassia occidentalis roots. S Afr J Bot. 2006;72(2):295-297.
- Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685-688.
- 6. Edem G. Evaluating assault caused by *Nauclea latifolia* on biochemical parameters of Wistar rats. J Res Biosci. 2021;4:10-16.
- 7. Enabulele S, Amusa O, Uwadiae E. Phytochemical, antimicrobial and nutritional properties of *Morinda lucida* and *Nauclea latifolia* leaf extracts. Int J Sci World. 2017;5:62-66.
- 8. Evans WC. Trease and Evans Pharmacognosy. 16th ed. London: Saunders Elsevier; 2009.
- Haudecoeur R, Ahmed-Belkacem A, Sournia-Saquet A, Borie C, Hutter S, Tillequin F, et al. Traditional uses, phytochemistry and pharmacology of African Nauclea species: a review. J Ethnopharmacol. 2017;212:106-136.
- 10. Harborne JB. Phytochemical Methods. 3rd ed. London: Chapman & Hall; 1998.
- 11. Oko O. Chemical composition of root and stem bark extracts of *Nauclea latifolia*. Arch Appl Sci Res. 2013;5(2):193-196.
- 12. Osuala FO, Ogunjobi AA, Nduka SO. Comparative study of extraction yield and phytochemical composition using different solvents. J Pharmacogn Phytochem. 2020;9(4):893-898.

- 13. Ríos JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol. 2005;100(1-2):80-84.
- 14. Sofowora A. Medicinal Plants and Traditional Medicine in Africa. 2nd ed. Ibadan: Spectrum Books Ltd.; 1993.
- 15. Tukur F, Maitera O, Khan M. Phytochemical analysis and chemotherapeutics of *Nauclea latifolia* leaves and stem bark. J Appl Pharm Sci. 2011;1(10):163-167.