

E-ISSN: 2278-4136
P-ISSN: 2349-8234
Impact Factor (RJIF): 6.35
www.phytojournal.com
JPP 2026; 15(1): 245-249
Received: 11-12-2025
Accepted: 08-01-2026

Dr. Nikita Ramnath Gavhane
MD Scholar, Department of
Dravyagunvigyan, CSMSS
Ayurved Mahavidyalaya and
Rugnalaya, Kanchanwadi, Chh.
Sambhajinagar, Maharashtra,
India

Dr. Pankaj P Surve
Guide & Professor, Department
of Dravyagunvigyan, CSMSS
Ayurved, Mahavidyalaya and
Rugnalaya, Kanchanwadi,
Chhatrapati, Sambhajinagar,
Maharashtra, India

Dr. Aparna M Ghotankar
Professor & H.O.D, Department
of Dravyagunvigyan, CSMSS
Ayurved Mahavidyalaya and
Rugnalaya Kanchanwadi, Chh.
Sambhajinagar, Maharashtra,
India

Corresponding Author:
Dr. Nikita Ramnath Gavhane
MD Scholar, Department of
Dravyagunvigyan, CSMSS
Ayurved Mahavidyalaya and
Rugnalaya, Kanchanwadi, Chh.
Sambhajinagar, Maharashtra,
India

A comprehensive review of *Pterospermum acerifolium* (Muchkunda): Ayurvedic perspective and modern scientific evidence

Nikita Ramnath Gavhane, Pankaj P Surve and Aparna M Ghotankar

DOI: <https://doi.org/10.22271/phyto.2026.v15.i1c.15729>

Abstract

Pterospermum acerifolium (L.) Willd., commonly known as Kanak Champa or Muchkunda, is an important medicinal plant widely described in classical Ayurvedic literature and traditionally used in various parts of India. The plant belongs to the family *Malvaceae* and is valued for its flowers, bark, leaves, and roots, which possess significant therapeutic properties. In Ayurveda, Muchkunda is attributed with *Tikta* and *Kashaya Rasa*, *Sheeta Virya*, and *Kapha-Pitta Shamaka* action. It is indicated in conditions such as *Daha*, *Trishna*, *Jwara*, *Raktapitta*, *Prameha*, *Kasa*, and inflammatory disorders. Classical texts highlight its role as a *Vedanasthapaka*, *Dahaprashtamana*, and *Vranaropaka* drug. Modern pharmacological studies support these traditional claims and have demonstrated anti-inflammatory, analgesic, antioxidant, antidiabetic, antimicrobial, hepatoprotective, and cardioprotective activities of *Pterospermum acerifolium*. Phytochemical investigations reveal the presence of flavonoids, tannins, phenolic compounds, glycosides, and sterols, which contribute to its wide spectrum of biological actions. Experimental studies have also shown its potential in managing metabolic disorders and oxidative stress-related conditions.

This review article aims to compile and critically analyze the available Ayurvedic references and modern scientific evidence on *Pterospermum acerifolium*, emphasizing its pharmacognosy, phytochemistry, pharmacological activities, and therapeutic applications. The integrative understanding of classical and contemporary perspectives highlights the potential of Muchkunda as a promising medicinal plant for future clinical research and evidence-based Ayurvedic practice.

Keywords: *Pterospermum acerifolium*, Kanak Champa, Muchkunda, Ayurveda, medicinal plant, pharmacological activities, phytochemistry

Introduction

Pterospermum acerifolium (L.) Willd., commonly known as Kanak Champa or Muchkunda, is a large deciduous tree belonging to the family *Malvaceae* and is widely distributed throughout the tropical and subtropical regions of India^[1]. The plant holds significant importance in Ayurveda, Siddha, and folk medicine systems, where different parts such as flowers, bark, leaves, and roots are therapeutically utilized^[2]. Classical Ayurvedic texts describe Muchkunda as possessing *Tikta* and *Kashaya Rasa*, *Sheeta Virya*, and *Laghu-Ruksha Guna*, making it effective in alleviating *Pitta* and *Kapha Dosha* disorders^[3].

Acharya Charaka and Sushruta have indicated Muchkunda in conditions like *Daha*, *Jwara*, *Trishna*, *Raktapitta*, *Prameha*, *Kasa*, *Shwasa*, and various inflammatory and burning sensation disorders^[4]. Owing to its *Dahaprashtamana* and *Vedanasthapaka* properties, it is also employed in external applications for *Vrana* and *Shopha*^[5]. The flowers are traditionally used as cooling and cardiotonic agents, while the bark is valued for its anti-inflammatory and antidiabetic actions^[6].

In recent years, scientific interest in *Pterospermum acerifolium* has increased due to emerging evidence supporting its antioxidant, anti-inflammatory, antidiabetic, antimicrobial, and hepatoprotective activities^[7]. Phytochemical studies have identified flavonoids, tannins, phenolic compounds, sterols, and glycosides, which are believed to be responsible for its pharmacological potential^[8]. Thus, an integrative review of Ayurvedic concepts and modern scientific findings is essential to validate and explore the therapeutic utility of Muchkunda in contemporary healthcare.

Aims

- To review the classical Ayurvedic references related to *Pterospermum acerifolium* (Kanak Champa / Muchkunda).

- To compile information regarding its botanical description and therapeutic uses described in Ayurvedic texts.
- To evaluate available modern scientific evidence on the phytochemical constituents and pharmacological activities of *Pterospermum acerifolium*.
- To correlate traditional Ayurvedic claims with contemporary experimental and clinical findings.

Methodology

This review is based on a comprehensive literature survey of classical Ayurvedic texts such as *Charaka Samhita*, *Sushruta Samhita*, *Bhavaprakasha Nighantu*, and standard *Dravyaguna* textbooks. Modern scientific data were collected from published research articles, review papers, and pharmacognosy books accessed through standard databases and indexed journals. The collected information was systematically analyzed and presented to provide an integrative understanding of *Pterospermum acerifolium* from both Ayurvedic and modern perspectives.

Drug Review of *Pterospermum acerifolium* (Kanak Champa / Muchkunda)

Nomenclature

- **Botanical name:** *Pterospermum acerifolium* (L.) Willd.
- **Family:** Malvaceae
- **Ayurvedic name:** Muchkunda
- **Common names:** Kanak Champa (Hindi), Muchkunda (Sanskrit), Bayur Tree (English)

Vernacular Names

- **Sanskrit:** Muchkunda
- **Hindi:** Kanak Champa
- **Marathi:** Muchkund
- **Bengali:** Muchkunda
- **Tamil:** Muchukundan
- **Telugu:** Muchukunda Chettu

Classical References

Muchkunda is described in *Bhavaprakasha Nighantu*, *Raja Nighantu*, and other *Dravyaguna* texts under *Shaka Varga* / *Vriksha Varga*. It is praised for its *Sheeta*, *Dahaprashtamana*, and *Pittashamaka* properties.

Botanical Description

- **Habit:** Large, deciduous ornamental tree
- **Height:** 15-25 meters
- **Bark:** Greyish-brown, rough, exfoliating in patches
- **Leaves:** Large, palmately lobed, resembling maple leaves, pubescent beneath
- **Flowers:** Large, white to pale yellow, fragrant, solitary or in clusters, nocturnal blooming
- **Fruits:** Woody, oblong capsules
- **Seeds:** Winged, aiding wind dispersal

Distribution

The plant is widely distributed throughout India, especially in the plains and sub-Himalayan tracts. It is commonly cultivated in gardens, avenues, and temple premises due to its attractive and fragrant flowers.

Useful Parts

- Flowers
- Bark

- Leaves
- Roots

Ayurvedic Pharmacodynamics (Rasapanchaka)

Parameter	Description
Rasa (Taste)	Tikta (Bitter), Kashaya (Astringent)
Guna (Qualities)	Laghu (Light), Ruksha (Dry)
Virya (Potency)	Sheeta (Cold)
Vipaka (Post-digestive effect)	Katu
Dosha Karma	Kapha-Pitta Shamaka

Karma (Therapeutic Actions)

- Dahaprashtamana (Relieves burning sensation).
- Vedanasthapaka (Analgesic).
- Jwaraghna (Antipyretic).
- Rakta-pittahara.
- Shothahara (Anti-inflammatory).
- Vranaropaka (Wound healing).
- Hrudya (Cardiotonic).

Indications (Rogaghnata)

- Jwara (Fever).
- Rakta-pitta.
- Prameha (Diabetes and Metabolic disorders).
- Kasa and Shwasa (Respiratory disorders).
- Shotha (Inflammation).
- Vrana (Wounds and ulcers).

Classical formulations and uses

- Flowers used in cooling decoctions and infusions.
- Bark used in *Kwatha* for *Prameha* and *Jwara*.
- Leaf paste applied externally in *Shopha* and *Daha*.
- Flower-based preparations used as *Hrudya* and *Pittashamaka*.

Phytochemical Constituents

- Flavonoids.
- Tannins.
- Phenolic compounds.
- Glycosides.
- Sterols.
- Saponins.

These constituents are responsible for antioxidant, anti-inflammatory, and antidiabetic actions.

Pharmacological Activities (Modern View)

- **Anti-inflammatory & Analgesic:** Reduces edema and pain.
- **Antioxidant:** Scavenges free radicals.
- **Antidiabetic:** Helps in glycemic control.
- **Antimicrobial:** Active against bacterial strains.
- **Hepatoprotective:** Protects liver cells.
- **Cardioprotective:** Supports cardiovascular function.

Mode of Action

- *Sheeta Virya* and *Tikta-Kashaya Rasa* alleviate aggravated *Pitta*, reducing burning sensation and inflammation.
- Antioxidant phytochemicals counter oxidative stress, explaining its role in *Prameha* and chronic inflammatory disorders.

- Astringent properties support wound healing and hemostatic action.

Dosage and Administration

- **Kwatha (Decoction):** 50-100 ml
- **Churna (Powder):** 3-6 g (bark/flower, as per classical guidance)
- **External application:** Paste or decoction wash, as required

Safety and Precautions

- Generally considered safe when used in classical doses
- Excessive use may aggravate *Vata* due to *Ruksha Guna*
- Should be used cautiously in individuals with *Vata Prakriti*

Research Gaps and Future Scope

- Limited clinical trials validating classical indications.
- Scope for formulation development in *Prameha*, *Daha*, and inflammatory disorders.
- Need for standardization and dosage optimization.

Modern review

Contemporary phytochemical investigations confirm that *Pterospermum acerifolium* is rich in phenolics, flavonoids, tannins, sterols, terpenoids, glycosides and saponins a profile consistent across studies of flowers, bark, leaves and fruits. These broad chemical classes form the biochemical basis for the plant's reported antioxidant, anti-inflammatory and antidiabetic properties.

Targeted phytochemical work (chromatography and spectroscopy) has isolated and identified several defined molecules from different parts of the plant, including.

- **Phenolic acids:** Protocatechuic acid, vanillic acid, methyl-protocatechuic acid.
- **Flavonoids and glycosides:** Apigenin and methoxy-apigenin derivatives, luteolin and luteolin-7-O-glucosides, vitexin and other flavone glycosides.
- **Sterols & glycosides:** β -sitosterol-3-O- β -D-glucoside.
- **Terpenoids and triterpenes:** Friedelan-3 α -ol, friedelan-3 β -ol, β -amyrin and other triterpenes.
- **Miscellaneous / volatile constituents:** Pterospermans (A-C), linalool derivatives, phytol and low molecular weight volatiles revealed by GC-MS. These compounds have been characterized using UV, MS, 1H/13C-NMR and comparison to reported standards.

Quantitative phytochemistry (total content, fingerprints)

Multiple studies report substantial total phenolic and total flavonoid content in aqueous/ethanolic extracts (flower, leaf, bark), with correlated in-vitro antioxidant capacity (DPPH, nitric oxide/scavenging, reducing power assays). HPLC fingerprints for active fractions (especially flower ethyl-acetate fractions) have been reported to support standardization and batch comparison.

Analytical methods used

Reported analytical and isolation techniques include:

- **Preliminary screening:** Qualitative phytochemical tests (for tannins, saponins, alkaloids).
- **Chromatography:** Column chromatography, preparative TLC, HPLC and HPTLC for fractionation and

fingerprinting.

- **Spectroscopy:** GC-MS for volatiles; LC-MS, 1H/13C-NMR and MS for structure elucidation of isolated compounds.
- **Bioassay-guided fractionation:** applied in antidiabetic and antioxidant studies to locate active fractions. These methods enable identification of marker compounds for future standardization.

Correlation of chemistry with bioactivity

- Antioxidant activity generally correlates with total phenolic/flavonoid content; phenolic acids and flavones are likely contributors.
- **Antidiabetic activity:** Bioactive ethyl-acetate fractions from flower extracts showed in-vitro enzyme inhibition (α -amylase/ α -glucosidase) and in-vivo antihyperglycemic effects in streptozotocin-nicotinamide rodent models; active fractions were subjected to HPLC fingerprinting for future lead identification.
- Antimicrobial, anti-inflammatory and hepatoprotective effects reported in several preclinical studies are plausibly linked to flavonoids, tannins and triterpenes identified in the plant.

Safety, toxicology and dose data

Acute toxicity studies cited in multiple reports indicate a relatively wide safety margin for crude extracts and active fractions at doses used in animal models; however, systematic subacute/chronic toxicology, reproductive toxicity and genotoxicity studies are sparse or absent. Traditional use suggests topical and oral applications, but standard therapeutic windows and contraindications remain under-documented in modern literature.

Quality control and standardization issues

Current limitations for clinical translation include:-

- Lack of validated marker compounds and pharmacopeial monographs for *P. acerifolium*.
- Variable extraction procedures and poorly reported yields across studies.
- Need for robust HPTLC/HPLC fingerprints and validated assays (content of marker flavonoid(s) or sterol glycoside) to ensure reproducible preparations. Several papers have started HPLC fingerprinting of flower extracts, a useful first step.

Gaps in knowledge & research priorities

- Isolation and full structure confirmation of additional active constituents (esp. pterospermans and other unique metabolites) and their synthetic or semi-synthetic analog development.
- Mechanistic pharmacology at molecular targets (inflammation pathways, insulin signalling, oxidative stress pathways).
- Standardization: selection of one or more chemical markers (e.g., specific flavonoid or sterol glycoside), development of validated HPLC/HPTLC assays and stability studies.
- Toxicology: GLP-compliant subacute/chronic toxicity, reproductive and genotoxicity studies.
- Clinical evaluation: small, well-designed human studies for prioritized indications (e.g., adjunctive therapy in type-2 diabetes, topical wound healing).

Practical takeaways

- *Pterospermum acerifolium* contains a chemically diverse set of phenolics, flavonoids, sterols and triterpenes that plausibly explain reported antioxidant, antidiabetic and anti-inflammatory activities.
- Existing analytical work (HPLC fingerprints, GC-MS volatiles, NMR-characterized isolates) provides a foundation, but standardized extracts and validated markers are still needed before reliable clinical use or product development.

Discussion

The present review highlights *Pterospermum acerifolium* (Kanak Champa / Muchkunda) as a medicinal plant of considerable therapeutic importance, supported by both classical Ayurvedic literature and modern scientific investigations. The convergence of traditional concepts and contemporary pharmacological findings strengthens the rationale for its use in various inflammatory, metabolic, and *Pitta*-dominant disorders.

From an Ayurvedic perspective, Muchkunda is characterized by *Tikta* and *Kashaya Rasa*, *Laghu-Ruksha Guna*, *Sheeta Virya*, and *Katu Vipaka*. These attributes collectively explain its *Pittashamaka* and *Kapha-shamaka* actions, making it particularly effective in conditions such as *Daha*, *Trishna*, *Jwara*, *Rakta*, *Shotha*, and *Prameha*. The repeated mention of Muchkunda in Nighantu for *Dahaprashamana* and *Vedanasthapana* indicates its classical utility in burning sensation and inflammatory conditions. External use in *Vrana* and *Shopha* further reflects its cooling, astringent, and healing properties.

The modern phytochemical profile of *Pterospermum acerifolium* provides a scientific basis for these classical claims. The presence of flavonoids, phenolic acids, tannins, sterols, triterpenoids, and glycosides is particularly relevant. Flavonoids and phenolic compounds are well known for their antioxidant and anti-inflammatory activities, which correlate with the Ayurvedic concept of *Pitta Shamana* and *Raktaprasadana*. Tannins, with their astringent nature, support wound healing and hemostatic actions, aligning with its use in *Rakta* and *Vrana*.

Experimental studies demonstrating antioxidant activity suggest that Muchkunda can counter oxidative stress, a key factor in the pathogenesis of chronic diseases such as diabetes, cardiovascular disorders, and neuro-inflammatory conditions. This observation parallels the Ayurvedic understanding of *Ama* and *Pitta* involvement in chronic metabolic disorders. The reported antidiabetic activity, including enzyme inhibition and glycemic control in experimental models, supports its classical indication in *Prameha*. In Ayurveda, *Tikta Rasa* and *Sheeta Virya* drugs are known to correct *Dhatvagni* imbalance and purify *Rakta* and *Meda*, which is consistent with these findings.

The anti-inflammatory and analgesic effects reported in modern studies further validate its traditional use in *Shotha*, *Ruja*, and *Jwara*. These effects may be attributed to inhibition of inflammatory mediators and stabilization of cellular membranes by bioactive constituents such as flavonoids and triterpenes. Similarly, antimicrobial activity supports its external application in wounds and skin conditions, as described in classical practice.

Despite these promising findings, certain limitations and gaps remain. Most modern studies are preclinical, and there is a paucity of well-designed clinical trials validating classical indications. Additionally, variability in extraction methods,

lack of standardized markers, and insufficient toxicological profiling limit its immediate translational application. From an Ayurvedic standpoint, considerations of *Prakriti*, *Anupana*, and *Kala* are often neglected in experimental designs, which may influence therapeutic outcomes.

Overall, the discussion emphasizes that *Pterospermum acerifolium* represents a classic example where Ayurvedic principles and modern pharmacology are complementary rather than contradictory. Its *Sheeta*, *Tikta-Kashaya* nature and demonstrated antioxidant, anti-inflammatory, and antidiabetic properties suggest strong potential for integrative therapeutic use. Future research focusing on standardization, mechanism-based studies, and clinical evaluation while incorporating Ayurvedic fundamentals will be crucial in fully establishing Muchkunda as an evidence-based medicinal drug in contemporary healthcare.

Conclusion

Pterospermum acerifolium (Kanak Champa / Muchkunda) is a valuable medicinal plant with a well-established place in classical Ayurvedic literature and growing scientific validation in modern research. Ayurvedic texts describe Muchkunda as *Tikta-Kashaya Rasa*, *Sheeta Virya*, and *Pitta-Kapha Shamaka*, justifying its traditional use in *Daha*, *Jwara*, *Trishna*, *Rakta*, *Shotha*, *Prameha*, and inflammatory conditions.

Modern phytochemical studies reveal the presence of flavonoids, phenolic compounds, tannins, sterols, and triterpenoids, which substantiate its antioxidant, anti-inflammatory, antidiabetic, antimicrobial, and wound-healing activities. These pharmacological effects provide a scientific explanation for the classical therapeutic claims of Muchkunda.

Although experimental evidence is encouraging, there remains a need for standardization of extracts, identification of reliable chemical markers, detailed toxicological evaluation, and well-designed clinical trials. Integrating Ayurvedic principles such as *Rasapanchaka*, *Prakriti*, and *Anupana* with modern research methodologies will further enhance its clinical relevance.

In conclusion, Muchkunda holds significant potential as an evidence-based Ayurvedic drug, and systematic interdisciplinary research may help establish *Pterospermum acerifolium* as a safe and effective therapeutic agent in the management of metabolic, inflammatory, and *Pitta*-dominant disorders.

References

1. Kirtikar KR, Basu BD. Indian medicinal plants. Vol. 1. Dehradun: International Book Distributors; 2005, p. 383-386.
2. Sharma PV. Dravyaguna Vijnana. Vol. 2. Varanasi: Chaukhamba Bharati Academy; 2013, p. 742-744.
3. Acharya YT, editor. Charaka Samhita of Agnivesha, Sutrasthana. Reprint ed. Varanasi: Chaukhamba Surbharati Prakashan; 2011.
4. Acharya YT, editor. Sushruta Samhita of Sushruta. Reprint Ed. Varanasi: Chaukhamba Surbharati Prakashan; 2012.
5. Bhavamishra. Bhavaprakasha Nighantu. Chunekar KC, commentator. Pandey GS, editor. Varanasi: Chaukhamba Bharati Academy; 2015, p. 487-488.
6. Nadkarni KM. Indian materia medica. Vol. 1. Mumbai: Popular Prakashan; 2009, p. 990-992.

7. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 55th Ed. Pune: Nirali Prakashan; 2018, p. 12.45-12.47.
8. Jain V, Verma SK, Katewa SS. Phytochemical and pharmacological evaluation of *Pterospermum acerifolium*. Indian J Nat Prod Resour. 2012;3(2):203-208.